Diffusion-limited reactions in crowded environments.
نویسندگان
چکیده
Diffusion-limited reactions are usually described within the Smoluchowski theory, which neglects interparticle interactions. We propose a simple way to incorporate excluded-volume effects building on simulations of hard sphere in the presence of a sink. For large values of the sink-to-particle size ratio R(s), the measured encounter rate is in good agreement with a simple generalization of the Smoluchowski equation at high densities. Reducing R(s), the encounter rate is substantially depressed and becomes even nonmonotonic for R(s)<<1. Concurrently with the saturation of the rate, stationary density waves set in close to the sink. A mean-field analysis helps to shed light on the subtle link between such ordering and the slowing down of the encounter dynamics. Finally, we show how an infinitesimal amount of nonreacting impurities can equally slow down dramatically the reaction.
منابع مشابه
Diffusion-limited reactions in crowded environments: a local density approximation.
In the real world, diffusion-limited reactions in chemistry and biology mostly occur in crowded environments, such as macromolecular complex formation in the cell. Despite the paramount importance of such phenomena, theoretical approaches still mainly rely on the Smoluchowski theory, only valid in the infinite dilution limit. In this paper we introduce a novel theoretical framework to describe ...
متن کاملDiffusion in crowded biological environments: applications of Brownian dynamics
Biochemical reactions in living systems occur in complex, heterogeneous media with total concentrations of macromolecules in the range of 50 - 400 mgml. Molecular species occupy a significant fraction of the immersing medium, up to 40% of volume. Such complex and volume-occupied environments are generally termed 'crowded' and/or 'confined'. In crowded conditions non-specific interactions betwee...
متن کاملBiochemical reactions in crowded environments: revisiting the effects of volume exclusion with simulations
Molecular crowding is ubiquitous within cells and affects many biological processes including protein-protein binding, enzyme activities and gene regulation. Here we revisit some generic effects of crowding using a combination of lattice simulations and reaction-diffusion simulations with the program ReaDDy. Specifically, we implement three reactions, simple binding, a diffusion-limited reactio...
متن کاملA Quantitative Model of ERK MAP Kinase Phosphorylation in Crowded Media
Cytoplasm contains a large number of macromolecules at extremely high densities. How this striking nature of intracellular milieu called macromolecular crowding affects intracellular signaling remains uncharacterized. Here, we examined the effect of macromolecular crowding on ERK MAPK phosphorylation by MEK MAPKK. Addition of polyethylene glycol-6000 (PEG-6000) as a crowder to mimic intracellul...
متن کاملReaction kinetics in intracellular environments with macromolecular crowding: simulations and rate laws.
We review recent evidence illustrating the fundamental difference between cytoplasmic and test tube biochemical kinetics and thermodynamics, and showing the breakdown of the law of mass action and power-law approximation in in vivo conditions. Simulations of biochemical reactions in non-homogeneous media show that as a result of anomalous diffusion and mixing of the biochemical species, reactio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 105 12 شماره
صفحات -
تاریخ انتشار 2010